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ABSTRACT

The use of an optimal prefilter prior to sampling can
lead to reduced mean square error after reconstruction.
The form of the best prefilter or the associated Tocal weight-
ing function depends upon the reconstruction method to be
used. We display and discuss these weighting functions for
the most common spline reconstruction methods.
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The purpose of this note is to indicate that the use
of the standard delta function filter for sampling is sub-
optimal when standard reconstruction techniques such as
nearest neighbor, linear,or cubic spline interpolation are
used for signal approximation. The errors induced in re-
construction using these schemes have led to various suggest-
ed modifications of the reconstruction methods. Such modi-
fications are often impractical because of their computa-
tional complexity. This note points out that mean square
errors can be minimized by the use of a specific prefilter,
i.e., by modifying the sampling technique.

The use of prefiltering to reduce reconstruction error
is not new. For example, it is known that the (L2-)
optimal prefilter for delta sampling followed by (sinx)/x-
reconstruction is a low pass filter [1]. In the case where
the original signal is band-limited, exact reconstruction
is possible. However, in precision processing of digitized
images, for example, as well as in other signal processing
applications, (sinx)/x interpolation is often considered
too costly when interpolated values are needed for geometric
correction and display magnification [2]. The usual inter-
polation schemes include nearest neighbor approximation,
linear interpolation, and cubic spline interpolation, which
we may regard as spline interpolation schemes of orders
zero, one, and three respectively. The substitution of
spline interpolation for sinx/x reconstruction calls for a

new prefilter; despite this fact, most imaging systems
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attempt to sample using a pure low pass filter followed by
delta-function sampling. Indeed, restoration theories
attempt to correct for inaccuracies in this "ideal" sampling
filter, even in the case of schemes which represent ideal
reconstructions by cubic splines [3].

The optimal prefilter for a given spline reconstruc-
tion scheme is the Fourier transform of the optimal weight-
ing function. We will determine the optimal weighting
functions for the three aforementioned spline schemes
assuming infinitely many equispaced knots (sampling points)
in one dimension. The problem is equivalent to that of
finding the best L2 spline approximation to a given noise-
free function with fixed knots [4]. By using the L2 norm,
we are led to a linear relationship between the sample
values {yi} used for reconstruction and the initial signal
f(x). This relationship is represented by tnhe weighting

function 95 i.e.,

vy = | 93 00f(x)x (1)

- 00

We have assumed infinitely many sample points so as to
assure that the 9; will all be translates of a single opti-
mal weighting function g, which is the desired solution.
Extensions to the cases of finitely many points, higher
dimensions, and other linear reconstruction techniques are
straightforward, based on the same standard numerical
analysis approach used below, once the reconstruction method

is properly formulated.
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Denote by A the transformation which takes a sequence

g of sample values {yi}? into the interpolating spline

1=

(or reconstructed function) s(x) with equispaced knots

located at points of the sequence {xi}f . Suppose that

E i
A restricted to square summable sequenceslz is a bounded
linear transformation into LZ(R)' Then for a given func-
tion f ¢ Lz, the sequence ; = {yi} which minimizes
IIAy - fll2 can be shown to be a solution to the "normal

equation"
(A*A); = A*f (2)

where A* is the adjoint transformation from (LZ(R))* to
(12)*, i.e., from LZ(R) to 22. Provided A*¥A is nonsingular,
the optimal sample Yj is a projection of the linear
L operator (A*A)']A* operating on f, and thus the optimal
weighting function 95 is the L2 dual element representing
that functional. This establishes equation (1).

By energy conservation considerations,

* J g;(x)dx = 1, and so in fact g; e L;(R). Thus g,;(x] is
£ : s ; .
3 the optimal weighting function for general L_(R) functions
i Cicdliad "
g; for minimizing the uniformly averaged mean square error.

: Finally, if A is covarient with respect to rigid left and

right shifts of the samples ¥y * Yk represented by
s(x) ~» s(x+xk), then the weighting functions g, are indepen-

dent of i modulo interval shifts, thus yielding a unique
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optimal weighting function g(x).

For spline reconstruction, we have

= z yi¢i(x)9 (3)

->
Y =-c

s(x) = A

where the ¢i(x) are basis spline functions chosen to suit

the particular application. If we regard A as an infinite
matrix whose kth column is the function ¢k(x), -0 < k < o,
and the variable x represents the row number, then A* = A |

and the i,j entry of A*A is the value J ¢i(x)¢j(x)dx. The

- 00

desired weighting function 9; is then simply the ith row of
the matrix (A*A)']A*, which is the spline generated by the

values {bik}:=_m’ where (bij) = (A*A)'].

It is customary to use B-spline basis functions for
the ¢i(x), which are shifts of the B-spline basis functions
at zero (Figure 1). Since the B-splines are symmetric with
finite support, the resulting infinite matrix (A*A) is
banded with constant bands. For zero order splines, A*A
is simply the identity matrix. For linear splines, A*A is
infinite tridiagonal, with entry 1/6 in the codiagonals,
and 2/3 in the diagonal. For cubic splines, A*A has seven
nonzero bands, whose values, incidentally, correspond to
B7(xi), f® <3, «2, =7, 0, 1, 2, 3, where B, is the B-spline
of order 7 centered at Xq -

In each case, A*A is invertible, so that we can solve
for the optimal samples {yi} used for reconstruction. How-

ever, for the cubic spline case, a special adjustment is
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needed. Because the cubic B-spline has support three in-
tervals wide, the value of the reconstructed spline at the

sample points is given by the formula

S(Xi) = (1/6)yi-] + (2/3)yi + (]/6)yi+]-

Although these values {yi} are useful for constructing s(x),
since the cubic B-spline is easily computed, our usual
notion of sampling and interpolation requires that the
sample Y5 satisfy s(xi) B e Indeed, Yi should be close

to f(xi), but not necessarily equal due to the prefiltering.

This latter condition on the {yi} is satisfied by the values

v = C(A*A)~TA*f,

where (4)

o
1]
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for A obtained from the cubic B-spline. The weighting
functions are obtained from the rows of C(A*A)']A*. The

spline s(x) can be reconstructed from these modified samples

using the unique bounded cubic basis splines Wi(x) satisfy-

ing Wi(x) = dij’ from the formula s(x) = ETm ?i(x). For
infinitely many equispaced points, the ¥; are all translates

of ¥gs shown in Figure 2. Even though the Wi have infinite

support, they decay rapidly, so that the sum, to machine
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precision, is finite. In fact, we could use the Wi's to de-
fine A, in which case the adjustment using the matrix C is
unnecessary. However, using a cubic B-spline to define A
assures that A*xAwill be easy to compute and will be banded.

Iﬁ each case, the appropriate operators are covariant
with respect to shifts, so that we obtain unique optimal
weighting functions, shown in Figure 3. As expected, for
nearest neighbor approximation the optimal samples are
obtained from local unweighted block averages. The optimal
weighting functions for linear and cubic spline interpola-
tion are more ;urprising, despite the fact that an optimal
prefilter is a familiar concept. The functions are not
spline approximations to (sinx)/x, since they decay exponen-
tially. The oscillatory behavior results from inverting
the positive matrix A*A, and is governed more by the con-
vergence of the partial quotients of a continued fraction
than by the function (sinx)/x [5]. Because the functions
in Figure 3 decay so rapidly, truncated versions with a
support radius of two or three intervals yield very nearly
the same optimal samples, which is often a distinct advant-
age over (sinx)/x weighting.

In any case, the observation that the weighting func-
tions behave qualitatively like (sinx)/x is consistent
with the earlier result that (sinx)/x reconstruction calls

for low-pass prefiltering -- i.e., a (sinx)/x weighting

function. Specifically, if we use basis functions

sin(n/h)(x-xi)
AL 7D T F e




to define A in equation 3, then we may solve (2) 'to obtain

the classical weighting function for Shannon reconstruction.
Since (sinc * sinc)(x) = wsinc(x), a fact which follows

from the Fourier equivalent rectz(x) = rect(x), we obtain
(A*A) = hI, I the identity matrix. So the rows of (A*A)']A*
are all translates of the classical low-pass weighting

function

sin(m/h)x
(m/h)x

g(x) =

=>|—

Error analysis shows that substantial reduction in
expected mean square error can be achieved by using the
appropriate prefilter from Figure 3, as opposed to unfilter-
ed delta sampling. For example, if the autocorrelation
function of the initial signal decays exponentially, and
the sampling is very fine, a 35% reduction in total ex-

pected mean square error can b: obtained by using optimal

sampling prior to linear reconstruction, as opposed to
normal delta sampling [5].
. Implementation of these results involves construction
K of the optimal sampling weighting functions for local inte-

! gration, or their Fourier transforms for spectral filtering.

3 If on2 is resampling finely sampled data to achieve com-

; pression, and expects to use spline reconstruction, then

M acrpropriate weights must be assigned to the values in the
neighborhood of the new sampling point. One can obtain
these weights by resolving the normal equations for quanti-
zed functions f, or by using approximations from the

; 7
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continuous case.
To construct the linear weighting function of Figure
3b, one need only find the linear spline interpolating the

)']. Thus one must invert

values of the central row of (A*A
an infinite tridiagonal matrix, which is an easy procedure

using the recursion formula:

1

b =
0 c1/(c0/c])2—4

1
by = 53— - 35— bpj,
1 2c] 2c] 0

by = -(eg/eqdby = by g
where o is the entry in the diagonal, and c] is the off

diagonal entry. In this case, Cy = 2/3, and cy = 1/6.

The middle row of the inverse matrix is {...,b_,,by,by,...}.

Because of overflow difficulties, in general one first

solves for z, = bk/b when calculating the bi's (6.  Ihe

k+1
cidentally, constructing the cubic basis function of B
Figure 2 involves the same matrix inversion to obtain

second moments at the knots.

For the optimal sampling cubic weighting function
(Figure 3c), an infinite banded matrix with seven nonzero
bands must be inverted. Since the matrix is diagonally
dominant, finite versions of the matrix are easily inverted.

These, as it turns out, converge rapidly to the desired
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infinite version as the size is increased, due to the rapid
decay of the inverse matrix values. A more general in-
version technique for this case would certainly be welcomed.
In both cases, however, to reconstruct the appropriate spline
weighting function, one need only store the few significant
nonzero values (bo,b],bz,b3,...) corresponding to

g(xo), g(x]),...,g(x3),... . Since g is the appropriate
spline interpolating these values, it can be obtained easily
from spline interpolation routines and a short table of
previously computed values for g(xi).

To summarize, we are recommending the substitution of
one of the weighting functions of Figure 3 for the standard
delta function sampling method, whenever practical. Our
analysis and construction of these weighting functions
assumed the case of infinitely many equispaced samples,
which permitted the presentation of the theory of optimal
prefiltering using the classical Banach spaces L2 and 22.
Since the resulting weighting functions decay rapidly, they
provide very nearly optimal samples for the finite case
everywhere except within two or three sample points of the
endpoints. In addition, their effectively narrow width
permits easy direct implementation of the local weighted
sum for sampling. Extension of this theory to sampling in
several dimensions is straightforward, especially if the re-
construction basis functions are separable in each variable.
Finally, the reconstructed function may be considerably
closer to the original function in the mean square sense if
one of the optimal prefilters is applied prior to sampling.

9
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